Laverty, J. P. (2022). A New ERP Curriculum to Integrate Computer Technologies, Accounting, and Data Analytics. In Proceedings of the EDSIG Conference ISSN (Vol. 2473, p. 4901).
Izmailov, Y., Pilevych, D., Shevtsiv, L., Petlenko, Y., Driha, O., & Lagun, A. (2020). Information systems and technologies in accounting and taxation as a means of integration into the digital economy.
Chornous, G., & Rybalchenko, S. (2017). Integration of Information Technologies' Dynamic Development into Academic Teaching Process. In ICTERI (pp. 207-222).
Kostev, R., & Dimitrova, S. (2022, October). Modern training of business information systems in E-commerce. In 2022 V International Conference on High Technology for Sustainable Development (HiTech) (pp. 1-4). IEEE.
Suarta, I. M., Suwintana, I. K., & Sudiadnyani, I. G. A. O. (2022, March). Technology and Information System Expertise Demand for Accounting Professionals: A Requirements Analysis of Job Advertisements. In International Conference on Applied Science and Technology on Social Science 2021 (iCAST-SS 2021) (pp. 276-282). Atlantis Press.
Hwang, K., & Chen, M. (2017). Big-data analytics for cloud, IoT and cognitive computing. John Wiley & Sons.
Elrod, C. C., Stanley, S. M., Cudney, E. A., Hilgers, M. G., & Graham, C. (2022). Management Information Systems Education: A Systematic Review. Journal of Information Systems Education, 33(4), 357-370.
Grabski, S. V., Leech, S. A., & Schmidt, P. J. (2011). A review of ERP research: A future agenda for accounting information systems. Journal of information systems, 25(1), 37-78.
Schmidt, P. J., Riley, J., & Swanson Church, K. (2020). Investigating accountants' resistance to move beyond Excel and adopt new data analytics technology. Accounting Horizons, 34(4), 165-180.
Wienand, M. Enterprise Systems End-User Training: Development and evaluation of design principles towards a multimedia elearning approach for future potential users considering cognitive and attitudinal aspects (Doctoral dissertation, Dissertation, Duisburg, Essen, Universität Duisburg-Essen, 2024).
Alam, K., Mostakim, M. A., & Khan, M. S. I. (2017). Design and Optimization of MicroSolar Grid for Off-Grid Rural Communities. Distributed Learning and Broad Applications in Scientific Research, 3.
Integrating solar cells into building materials (Building-Integrated Photovoltaics-BIPV) to turn buildings into self-sustaining energy sources. Journal of Artificial Intelligence Research and Applications, 2(2).
JALA, S., ADHIA, N., KOTHARI, M., JOSHI, D., & PAL, R. SUPPLY CHAIN DEMAND FORECASTING USING APPLIED MACHINE LEARNING AND FEATURE ENGINEERING.
Joshi, D., Sayed, F., Jain, H., Beri, J., Bandi, Y., & Karamchandani, S. A Cloud Native Machine Learning based Approach for Detection and Impact of Cyclone and Hurricanes on Coastal Areas of Pacific and Atlantic Ocean.
Mishra, M. (2017). Reliability-based Life Cycle Management of Corroding Pipelines via Optimization under Uncertainty (Doctoral dissertation).
Agarwal, A. V., & Kumar, S. (2017, October). Intelligent multi-level mechanism of secure data handling of vehicular information for post-accident protocols. In 2017 2nd International Conference on Communication and Electronics Systems (ICCES) (pp. 902-906). IEEE.
Malhotra, I., Gopinath, S., Janga, K. C., Greenberg, S., Sharma, S. K., & Tarkovsky, R. (2014). Unpredictable nature of tolvaptan in treatment of hypervolemic hyponatremia: case review on role of vaptans. Case reports in endocrinology, 2014(1), 807054.
Shakibaie-M, B. (2013). Comparison of the effectiveness of two different bone substitute materials for socket preservation after tooth extraction: a controlled clinical study. International Journal of Periodontics & Restorative Dentistry, 33(2).
Gopinath, S., Janga, K. C., Greenberg, S., & Sharma, S. K. (2013). Tolvaptan in the treatment of acute hyponatremia associated with acute kidney injury. Case reports in nephrology, 2013(1), 801575.
Shilpa, Lalitha, Prakash, A., & Rao, S. (2009). BFHI in a tertiary care hospital: Does being Baby friendly affect lactation success?. The Indian Journal of Pediatrics, 76, 655-657.
Singh, V. K., Mishra, A., Gupta, K. K., Misra, R., & Patel, M. L. (2015). Reduction of microalbuminuria in type-2 diabetes mellitus with angiotensin-converting enzyme inhibitor alone and with cilnidipine. Indian Journal of Nephrology, 25(6), 334-339.
Gopinath, S., Giambarberi, L., Patil, S., & Chamberlain, R. S. (2016). Characteristics and survival of patients with eccrine carcinoma: a cohort study. Journal of the American Academy of Dermatology, 75(1), 215-217.
Swarnagowri, B. N., & Gopinath, S. (2013). Ambiguity in diagnosing esthesioneuroblastoma--a case report. Journal of Evolution of Medical and Dental Sciences, 2(43), 8251-8255.
Swarnagowri, B. N., & Gopinath, S. (2013). Pelvic Actinomycosis Mimicking Malignancy: A Case Report. tuberculosis, 14, 15.
Nalla, L. N., & Reddy, V. M. Machine Learning and Predictive Analytics in E-commerce: A Data-driven Approach.
Reddy, V. M., & Nalla, L. N. Implementing Graph Databases to Improve Recommendation Systems in E-commerce.
Krishnan, S., Shah, K., Dhillon, G., & Presberg, K. (2016). 1995: FATAL PURPURA FULMINANS AND FULMINANT PSEUDOMONAL SEPSIS. Critical Care Medicine, 44(12), 574.
Krishnan, S. K., Khaira, H., & Ganipisetti, V. M. (2014, April). Cannabinoid hyperemesis syndrome-truly an oxymoron!. In JOURNAL OF GENERAL INTERNAL MEDICINE (Vol. 29, pp. S328-S328). 233 SPRING ST, NEW YORK, NY 10013 USA: SPRINGER.
Krishnan, S., & Selvarajan, D. (2014). D104 CASE REPORTS: INTERSTITIAL LUNG DISEASE AND PLEURAL DISEASE: Stones Everywhere!. American Journal of Respiratory and Critical Care Medicine, 189, 1
Rahman, A., Debnath, P., Ahmed, A., Dalim, H. M., Karmakar, M., Sumon, M. F. I., & Khan, M. A. (2024). Machine learning and network analysis for financial crime detection: Mapping and identifying illicit transaction patterns in global black money transactions. Gulf Journal of Advance Business Research, 2(6), 250-272.
Chowdhury, M. S. R., Islam, M. S., Al Montaser, M. A., Rasel, M. A. B., Barua, A., Chouksey, A., & Chowdhury, B. R. (2024). PREDICTIVE MODELING OF HOUSEHOLD ENERGY CONSUMPTION IN THE USA: THE ROLE OF MACHINE LEARNING AND SOCIOECONOMIC FACTORS. The American Journal of Engineering and Technology, 6(12), 99-118.
Sumsuzoha, M., Rana, M. S., Islam, M. S., Rahman, M. K., Karmakar, M., Hossain, M. S., & Shawon, R. E. R. (2024). LEVERAGING MACHINE LEARNING FOR RESOURCE OPTIMIZATION IN USA DATA CENTERS: A FOCUS ON INCOMPLETE DATA AND BUSINESS DEVELOPMENT. The American Journal of Engineering and Technology, 6(12), 119-140.
Sumon, M. F. I., Rahman, A., Debnath, P., Mohaimin, M. R., Karmakar, M., Khan, M. A., & Dalim, H. M. (2024). Predictive Modeling of Water Quality and Sewage Systems: A Comparative Analysis and Economic Impact Assessment Using Machine Learning. in Library, 1(3), 1-18.
Al Montaser, M. A., Ghosh, B. P., Barua, A., Karim, F., Das, B. C., Shawon, R. E. R., & Chowdhury, M. S. R. (2025). Sentiment analysis of social media data: Business insights and consumer behavior trends in the USA. Edelweiss Applied Science and Technology, 9(1), 545-565.