Raza, M. Q., & Khosravi, A. (2015). A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings. Renewable and Sustainable Energy Reviews, 50, 1352-1372.
Daut, M. A. M., Hassan, M. Y., Abdullah, H., Rahman, H. A., Abdullah, M. P., & Hussin, F. (2017). Building electrical energy consumption forecasting analysis using conventional and artificial intelligence methods: A review. Renewable and Sustainable Energy Reviews, 70, 1108-1118.
Ghanbari, A., Hadavandi, E., & Abbasian-Naghneh, S. (2010, August). Comparison of artificial intelligence based techniques for short term load forecasting. In 2010 Third International Conference on Business Intelligence and Financial Engineering (pp. 6-10). IEEE.
Amirkolaii, K. N., Baboli, A., Shahzad, M. K., & Tonadre, R. (2017). Demand forecasting for irregular demands in business aircraft spare parts supply chains by using artificial intelligence (AI). IFAC-PapersOnLine, 50(1), 15221-15226.
Xu, Y., Cai, J., & Milanović, J. V. (2014, October). On accuracy of demand forecasting and its extension to demand composition forecasting using artificial intelligence based methods. In IEEE PES Innovative Smart Grid Technologies, Europe (pp. 1-6). IEEE.
Khosravi, A., Nahavandi, S., Creighton, D., & Srinivasan, D. (2012). Interval type-2 fuzzy logic systems for load forecasting: A comparative study. IEEE Transactions on Power Systems, 27(3), 1274-1282.
Wang, Z., & Srinivasan, R. S. (2017). A review of artificial intelligence based building energy use prediction: Contrasting the capabilities of single and ensemble prediction models. Renewable and Sustainable Energy Reviews, 75, 796-808.
Liu, Y., Yu, S., Zhu, Y., Wang, D., & Liu, J. (2018). Modeling, planning, application and management of energy systems for isolated areas: A review. Renewable and Sustainable Energy Reviews, 82, 460-470.
Mahmud, U., Alam, K., Mostakim, M. A., & Khan, M. S. I. (2018). AI-driven micro solar power grid systems for remote communities: Enhancing renewable energy efficiency and reducing carbon emissions. Distributed Learning and Broad Applications in Scientific Research, 4.
Alam, K., Mostakim, M. A., & Khan, M. S. I. (2017). Design and Optimization of MicroSolar Grid for Off-Grid Rural Communities. Distributed Learning and Broad Applications in Scientific Research, 3.
Integrating solar cells into building materials (Building-Integrated Photovoltaics-BIPV) to turn buildings into self-sustaining energy sources. Journal of Artificial Intelligence Research and Applications, 2(2).
Manoharan, A., & Nagar, G. MAXIMIZING LEARNING TRAJECTORIES: AN INVESTIGATION INTO AI-DRIVEN NATURAL LANGUAGE PROCESSING INTEGRATION IN ONLINE EDUCATIONAL PLATFORMS.
Joshi, D., Sayed, F., Jain, H., Beri, J., Bandi, Y., & Karamchandani, S. A Cloud Native Machine Learning based Approach for Detection and Impact of Cyclone and Hurricanes on Coastal Areas of Pacific and Atlantic Ocean.
Agarwal, A. V., & Kumar, S. (2017, November). Unsupervised data responsive based monitoring of fields. In 2017 International Conference on Inventive Computing and Informatics (ICICI) (pp. 184-188). IEEE.
Agarwal, A. V., Verma, N., Saha, S., & Kumar, S. (2018). Dynamic Detection and Prevention of Denial of Service and Peer Attacks with IPAddress Processing. Recent Findings in Intelligent Computing Techniques: Proceedings of the 5th ICACNI 2017, Volume 1, 707, 139.
Mishra, M. (2017). Reliability-based Life Cycle Management of Corroding Pipelines via Optimization under Uncertainty (Doctoral dissertation).
Agarwal, A. V., Verma, N., & Kumar, S. (2018). Intelligent Decision Making Real-Time Automated System for Toll Payments. In Proceedings of International Conference on Recent Advancement on Computer and Communication: ICRAC 2017 (pp. 223-232). Springer Singapore.
Agarwal, A. V., & Kumar, S. (2017, October). Intelligent multi-level mechanism of secure data handling of vehicular information for post-accident protocols. In 2017 2nd International Conference on Communication and Electronics Systems (ICCES) (pp. 902-906). IEEE.
Malhotra, I., Gopinath, S., Janga, K. C., Greenberg, S., Sharma, S. K., & Tarkovsky, R. (2014). Unpredictable nature of tolvaptan in treatment of hypervolemic hyponatremia: case review on role of vaptans. Case reports in endocrinology, 2014(1), 807054.
Shakibaie-M, B. (2013). Comparison of the effectiveness of two different bone substitute materials for socket preservation after tooth extraction: a controlled clinical study. International Journal of Periodontics & Restorative Dentistry, 33(2).
Gopinath, S., Janga, K. C., Greenberg, S., & Sharma, S. K. (2013). Tolvaptan in the treatment of acute hyponatremia associated with acute kidney injury. Case reports in nephrology, 2013(1), 801575.
Shilpa, Lalitha, Prakash, A., & Rao, S. (2009). BFHI in a tertiary care hospital: Does being Baby friendly affect lactation success?. The Indian Journal of Pediatrics, 76, 655-657.
Singh, V. K., Mishra, A., Gupta, K. K., Misra, R., & Patel, M. L. (2015). Reduction of microalbuminuria in type-2 diabetes mellitus with angiotensin-converting enzyme inhibitor alone and with cilnidipine. Indian Journal of Nephrology, 25(6), 334-339.
Gopinath, S., Giambarberi, L., Patil, S., & Chamberlain, R. S. (2016). Characteristics and survival of patients with eccrine carcinoma: a cohort study. Journal of the American Academy of Dermatology, 75(1), 215-217.
Swarnagowri, B. N., & Gopinath, S. (2013). Ambiguity in diagnosing esthesioneuroblastoma--a case report. Journal of Evolution of Medical and Dental Sciences, 2(43), 8251-8255.
Swarnagowri, B. N., & Gopinath, S. (2013). Pelvic Actinomycosis Mimicking Malignancy: A Case Report. tuberculosis, 14, 15.
Maddireddy, B. R., & Maddireddy, B. R. (2020). Proactive Cyber Defense: Utilizing AI for Early Threat Detection and Risk Assessment. International Journal of Advanced Engineering Technologies and Innovations, 1(2), 64-83.
Maddireddy, B. R., & Maddireddy, B. R. (2020). AI and Big Data: Synergizing to Create Robust Cybersecurity Ecosystems for Future Networks. International Journal of Advanced Engineering Technologies and Innovations, 1(2), 40-63.
Damaraju, A. (2020). Social Media as a Cyber Threat Vector: Trends and Preventive Measures. Revista Espanola de Documentacion Cientifica, 14(1), 95-112.
Chirra, B. R. (2020). Enhancing Cybersecurity Resilience: Federated Learning-Driven Threat Intelligence for Adaptive Defense. International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence, 11(1), 260-280.
Chirra, B. R. (2020). Securing Operational Technology: AI-Driven Strategies for Overcoming Cybersecurity Challenges. International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence, 11(1), 281-302.
Chirra, B. R. (2020). Advanced Encryption Techniques for Enhancing Security in Smart Grid Communication Systems. International Journal of Advanced Engineering Technologies and Innovations, 1(2), 208-229.
Chirra, B. R. (2020). AI-Driven Fraud Detection: Safeguarding Financial Data in Real-Time. Revista de Inteligencia Artificial en Medicina, 11(1), 328-347.
Gadde, H. (2019). Integrating AI with Graph Databases for Complex Relationship Analysis. International
Gadde, H. (2019). AI-Driven Schema Evolution and Management in Heterogeneous Databases. International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence, 10(1), 332-356.
Gadde, H. (2019). Exploring AI-Based Methods for Efficient Database Index Compression. Revista de Inteligencia Artificial en Medicina, 10(1), 397-432.
Goriparthi, R. G. (2020). AI-Driven Automation of Software Testing and Debugging in Agile Development. Revista de Inteligencia Artificial en Medicina, 11(1), 402-421.
Goriparthi, R. G. (2020). Neural Network-Based Predictive Models for Climate Change Impact Assessment. International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence, 11(1), 421-421.
Reddy, V. M., & Nalla, L. N. (2020). The Impact of Big Data on Supply Chain Optimization in Ecommerce. International Journal of Advanced Engineering Technologies and Innovations, 1(2), 1-20.
Nalla, L. N., & Reddy, V. M. (2020). Comparative Analysis of Modern Database Technologies in Ecommerce Applications. International Journal of Advanced Engineering Technologies and Innovations, 1(2), 21-39.
Nalla, L. N., & Reddy, V. M. Machine Learning and Predictive Analytics in E-commerce: A Data-driven Approach.
Reddy, V. M., & Nalla, L. N. Implementing Graph Databases to Improve Recommendation Systems in E-commerce.
Krishnan, S., Shah, K., Dhillon, G., & Presberg, K. (2016). 1995: FATAL PURPURA FULMINANS AND FULMINANT PSEUDOMONAL SEPSIS. Critical Care Medicine, 44(12), 574.
Krishnan, S. K., Khaira, H., & Ganipisetti, V. M. (2014, April). Cannabinoid hyperemesis syndrome-truly an oxymoron!. In JOURNAL OF GENERAL INTERNAL MEDICINE (Vol. 29, pp. S328-S328). 233 SPRING ST, NEW YORK, NY 10013 USA: SPRINGER.
Krishnan, S., & Selvarajan, D. (2014). D104 CASE REPORTS: INTERSTITIAL LUNG DISEASE AND PLEURAL DISEASE: Stones Everywhere!. American Journal of Respiratory and Critical Care Medicine, 189, 1
Rahman, A., Debnath, P., Ahmed, A., Dalim, H. M., Karmakar, M., Sumon, M. F. I., & Khan, M. A. (2024). Machine learning and network analysis for financial crime detection: Mapping and identifying illicit transaction patterns in global black money transactions. Gulf Journal of Advance Business Research, 2(6), 250-272.
Chowdhury, M. S. R., Islam, M. S., Al Montaser, M. A., Rasel, M. A. B., Barua, A., Chouksey, A., & Chowdhury, B. R. (2024). PREDICTIVE MODELING OF HOUSEHOLD ENERGY CONSUMPTION IN THE USA: THE ROLE OF MACHINE LEARNING AND SOCIOECONOMIC FACTORS. The American Journal of Engineering and Technology, 6(12), 99-118.
Sumsuzoha, M., Rana, M. S., Islam, M. S., Rahman, M. K., Karmakar, M., Hossain, M. S., & Shawon, R. E. R. (2024). LEVERAGING MACHINE LEARNING FOR RESOURCE OPTIMIZATION IN USA DATA CENTERS: A FOCUS ON INCOMPLETE DATA AND BUSINESS DEVELOPMENT. The American Journal of Engineering and Technology, 6(12), 119-140.
Sumon, M. F. I., Rahman, A., Debnath, P., Mohaimin, M. R., Karmakar, M., Khan, M. A., & Dalim, H. M. (2024). Predictive Modeling of Water Quality and Sewage Systems: A Comparative Analysis and Economic Impact Assessment Using Machine Learning. in Library, 1(3), 1-18.
Al Montaser, M. A., Ghosh, B. P., Barua, A., Karim, F., Das, B. C., Shawon, R. E. R., & Chowdhury, M. S. R. (2025). Sentiment analysis of social media data: Business insights and consumer behavior trends in the USA. Edelweiss Applied Science and Technology, 9(1), 545-565.