Celestin, M., & Vanitha, N. (2018). AI-Powered Entrepreneurship: The Tools That Will Shape Tomorrow's Startups. International Journal of Advanced Trends in Engineering and Technology (IJATET), 3(2), 29-35.
Sharma, P. (2016, August). Role of AI in Enhancing the Efficiency and Effectiveness of Shop and Delivery Propositions in Smart Cities.
Min, H. (2010). Artificial intelligence in supply chain management: theory and applications. International Journal of Logistics: Research and Applications, 13(1), 13-39.
Downing, M., Chipulu, M., Ojiako, U., & Kaparis, D. (2014). Advanced inventory planning and forecasting solutions: a case study of the UKTLCS Chinook maintenance programme. Production Planning & Control, 25(1), 73-90.
Cao, M., Vonderembse, M. A., Zhang, Q., & Ragu-Nathan, T. S. (2010). Supply chain collaboration: conceptualisation and instrument development. International Journal of Production Research, 48(22), 6613-6635.
Atnafu, D., & Balda, A. (2018). The impact of inventory management practice on firms’ competitiveness and organizational performance: Empirical evidence from micro and small enterprises in Ethiopia. Cogent Business & Management, 5(1), 1503219.
Spiegler, V. L., Naim, M. M., & Wikner, J. (2012). A control engineering approach to the assessment of supply chain resilience. International journal of production research, 50(21), 6162-6187.
Chui, M., Manyika, J., Miremadi, M., Henke, N., Chung, R., Nel, P., & Malhotra, S. (2018). Notes from the AI frontier: Insights from hundreds of use cases. McKinsey Global Institute, 2, 267.
Cheng, C. Y., Li, S. F., Chu, S. J., Yeh, C. Y., & Simmons, R. J. (2013). Application of fault tree analysis to assess inventory risk: a practical case from aerospace manufacturing. International Journal of Production Research, 51(21), 6499-6514.
Hofmann, E. (2017). Big data and supply chain decisions: the impact of volume, variety and velocity properties on the bullwhip effect. International Journal of Production Research, 55(17), 5108-5126.
Mahmud, U., Alam, K., Mostakim, M. A., & Khan, M. S. I. (2018). AI-driven micro solar power grid systems for remote communities: Enhancing renewable energy efficiency and reducing carbon emissions. Distributed Learning and Broad Applications in Scientific Research, 4.
Alam, K., Mostakim, M. A., & Khan, M. S. I. (2017). Design and Optimization of MicroSolar Grid for Off-Grid Rural Communities. Distributed Learning and Broad Applications in Scientific Research, 3.
Integrating solar cells into building materials (Building-Integrated Photovoltaics-BIPV) to turn buildings into self-sustaining energy sources. Journal of Artificial Intelligence Research and Applications, 2(2).
Manoharan, A., & Nagar, G. MAXIMIZING LEARNING TRAJECTORIES: AN INVESTIGATION INTO AI-DRIVEN NATURAL LANGUAGE PROCESSING INTEGRATION IN ONLINE EDUCATIONAL PLATFORMS.
Agarwal, A. V., & Kumar, S. (2017, November). Unsupervised data responsive based monitoring of fields. In 2017 International Conference on Inventive Computing and Informatics (ICICI) (pp. 184-188). IEEE.
Agarwal, A. V., Verma, N., Saha, S., & Kumar, S. (2018). Dynamic Detection and Prevention of Denial of Service and Peer Attacks with IPAddress Processing. Recent Findings in Intelligent Computing Techniques: Proceedings of the 5th ICACNI 2017, Volume 1, 707, 139.
Mishra, M. (2017). Reliability-based Life Cycle Management of Corroding Pipelines via Optimization under Uncertainty (Doctoral dissertation).
Agarwal, A. V., Verma, N., & Kumar, S. (2018). Intelligent Decision Making Real-Time Automated System for Toll Payments. In Proceedings of International Conference on Recent Advancement on Computer and Communication: ICRAC 2017 (pp. 223-232). Springer Singapore.
Agarwal, A. V., & Kumar, S. (2017, October). Intelligent multi-level mechanism of secure data handling of vehicular information for post-accident protocols. In 2017 2nd International Conference on Communication and Electronics Systems (ICCES) (pp. 902-906). IEEE.
Malhotra, I., Gopinath, S., Janga, K. C., Greenberg, S., Sharma, S. K., & Tarkovsky, R. (2014). Unpredictable nature of tolvaptan in treatment of hypervolemic hyponatremia: case review on role of vaptans. Case reports in endocrinology, 2014(1), 807054.
Shakibaie-M, B. (2013). Comparison of the effectiveness of two different bone substitute materials for socket preservation after tooth extraction: a controlled clinical study. International Journal of Periodontics & Restorative Dentistry, 33(2).
Gopinath, S., Janga, K. C., Greenberg, S., & Sharma, S. K. (2013). Tolvaptan in the treatment of acute hyponatremia associated with acute kidney injury. Case reports in nephrology, 2013(1), 801575.
Shilpa, Lalitha, Prakash, A., & Rao, S. (2009). BFHI in a tertiary care hospital: Does being Baby friendly affect lactation success?. The Indian Journal of Pediatrics, 76, 655-657.
Singh, V. K., Mishra, A., Gupta, K. K., Misra, R., & Patel, M. L. (2015). Reduction of microalbuminuria in type-2 diabetes mellitus with angiotensin-converting enzyme inhibitor alone and with cilnidipine. Indian Journal of Nephrology, 25(6), 334-339.
Gopinath, S., Giambarberi, L., Patil, S., & Chamberlain, R. S. (2016). Characteristics and survival of patients with eccrine carcinoma: a cohort study. Journal of the American Academy of Dermatology, 75(1), 215-217.
Swarnagowri, B. N., & Gopinath, S. (2013). Ambiguity in diagnosing esthesioneuroblastoma--a case report. Journal of Evolution of Medical and Dental Sciences, 2(43), 8251-8255.
Swarnagowri, B. N., & Gopinath, S. (2013). Pelvic Actinomycosis Mimicking Malignancy: A Case Report. tuberculosis, 14, 15.
Nalla, L. N., & Reddy, V. M. Machine Learning and Predictive Analytics in E-commerce: A Data-driven Approach.
Reddy, V. M., & Nalla, L. N. Implementing Graph Databases to Improve Recommendation Systems in E-commerce.
Krishnan, S., Shah, K., Dhillon, G., & Presberg, K. (2016). 1995: FATAL PURPURA FULMINANS AND FULMINANT PSEUDOMONAL SEPSIS. Critical Care Medicine, 44(12), 574.
Krishnan, S. K., Khaira, H., & Ganipisetti, V. M. (2014, April). Cannabinoid hyperemesis syndrome-truly an oxymoron!. In JOURNAL OF GENERAL INTERNAL MEDICINE (Vol. 29, pp. S328-S328). 233 SPRING ST, NEW YORK, NY 10013 USA: SPRINGER.
Krishnan, S., & Selvarajan, D. (2014). D104 CASE REPORTS: INTERSTITIAL LUNG DISEASE AND PLEURAL DISEASE: Stones Everywhere!. American Journal of Respiratory and Critical Care Medicine, 189, 1
Rahman, A., Debnath, P., Ahmed, A., Dalim, H. M., Karmakar, M., Sumon, M. F. I., & Khan, M. A. (2024). Machine learning and network analysis for financial crime detection: Mapping and identifying illicit transaction patterns in global black money transactions. Gulf Journal of Advance Business Research, 2(6), 250-272.
Chowdhury, M. S. R., Islam, M. S., Al Montaser, M. A., Rasel, M. A. B., Barua, A., Chouksey, A., & Chowdhury, B. R. (2024). PREDICTIVE MODELING OF HOUSEHOLD ENERGY CONSUMPTION IN THE USA: THE ROLE OF MACHINE LEARNING AND SOCIOECONOMIC FACTORS. The American Journal of Engineering and Technology, 6(12), 99-118.
Sumsuzoha, M., Rana, M. S., Islam, M. S., Rahman, M. K., Karmakar, M., Hossain, M. S., & Shawon, R. E. R. (2024). LEVERAGING MACHINE LEARNING FOR RESOURCE OPTIMIZATION IN USA DATA CENTERS: A FOCUS ON INCOMPLETE DATA AND BUSINESS DEVELOPMENT. The American Journal of Engineering and Technology, 6(12), 119-140.
Sumon, M. F. I., Rahman, A., Debnath, P., Mohaimin, M. R., Karmakar, M., Khan, M. A., & Dalim, H. M. (2024). Predictive Modeling of Water Quality and Sewage Systems: A Comparative Analysis and Economic Impact Assessment Using Machine Learning. in Library, 1(3), 1-18.
Al Montaser, M. A., Ghosh, B. P., Barua, A., Karim, F., Das, B. C., Shawon, R. E. R., & Chowdhury, M. S. R. (2025). Sentiment analysis of social media data: Business insights and consumer behavior trends in the USA. Edelweiss Applied Science and Technology, 9(1), 545-565.