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Abstract:  

Due to the overwhelming number of solutions for Big Data processing during the last few years, 

distributed data engineering frameworks have become one of the most effective tools for real-time 

analyses and decision-making in numerous domains. However, these frameworks are becoming more 

expansive due to the sheer complexity that is driving the scale of these systems, and this is where the 

anomalies – or variations from the norm or anticipated patterns – are proving to be very hard to identify. 

Originally applied anomaly detection techniques are not effective when dealing with dynamic high 

dimensional and real time-based distributed environments. 

Thus, the subject of this paper is the improvement of detecting anomalies in distributed data engineering 

frameworks using Artificial Intelligence (AI) approaches. This study aims at developing a rich framework 

for real-time anomaly detection with the help of the advanced machine learning techniques including deep 

learning-based auto encoder, generative adversarial network –GAN and recurrent neural network –RNN. 

It proposed solves the problem of unavailable labeled data by using unsupervised as well as semi 

supervised learning and targets scalability by integrating it to operate in big data ecosystems such as 

Apache Spark, Hadoop and Flink. 

Overall performance analysis of the proposed framework is carried out by employing both synthetic and 

real-life datasets for accuracy, recall, F1-measure and time complexity analysis. The obtained results 

confirm the superiority of the proposed system over basic approaches and indicate its flexibility under 

changing loads and the possibility of detecting different forms of anomalous behavior such as point 

anomalies, contextual anomalies, collective anomalies, etc. In the same way, it clarifies how model 

interpretability, data privacy, and efficient resource use in a distributed environment are critical issues in 

this study. 

These results also highlight the improvement prospects of AI-based anomaly detection in increasing the 

dependability, extensibility, and security of distributed data engineering platforms. It will open up new 

possibilities for further development of smart anomaly detection solutions, and provides the basis for 

further extension, possible in the form of federated learning or other combinations of AI approaches. 

 

Keywords: Anomaly Detection, Artificial Intelligence, Distributed Data Engineering Frameworks, 

Machine Learning, Real-Time Analytics, Scalability, Data Reliability, Apache Spark, Deep Learning, 

Data Privacy. 

1. Introduction 

2.1 Background 

https://dx.doi.org/10.18535/ijetst/v10i1.01
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Dispersed data engineering systems have emerged as the fundamental infrastructure for present day 

information-centric environments, providing methods to manage large amounts of information. Platforms 

like Apache Spark, Hadoop, Flink, offer platform level architectures and solutions for big data storage, real-

time, as well as complex analytical solutions. It is these systems that allow industries from the finance sector 

to healthcare, e-commerce, and beyond, to draw meaning from high volume and velocity data. Despite these 

advantages, complex nature of distributed system also implies presence of cracks that cause rather severe 

failures. Transmission errors, incomplete/inaccurate data, unauthorized entries, and system/cyber-application 

inefficiencies, collectively regarded as anomalies, are highly dangerous to system dependability and 

credibility as well as efficient performance. 

2.2 Motivation 

Standard approaches to anomaly detection, including the statistical method and rules-based systems, are 

insufficient to meet the requirements of the distributed environment. These methods do not scale well with 

the data, where it evolves over time, in high dimensional feature space and where the objective is to perform 

real-time detection in complex large-scale systems. This gap can only be filled by solutions that are accurate, 

which can be flexible and can be easily scaled as much as needed. However, something as complex as News 

Aggregation cannot be handled efficiently by the existing techniques of Recommender Systems, with their 

basic Collaborative and Content Based filtering; the new kid on the block with its new age machine learning 

and deep learning techniques is Artificial Intelligence (AI). Anomaly detection using AI involves the use of 

pattern recognition, machine learning as well as other prediction techniques to identify invulnerable patterns 

in highly complex situations, which makes it different from general methods. 

2.3 Research Problem and Objectives 

This work is concerned with applying AI methods in distributed data engineering architectures to improve 

the performance, effectiveness and scalability of anomaly detection systems. The paper aims to explore 

which AI techniques can be used to resolve the issues of distributed environments, such as: data 

heterogeneity, the requirements for real-time data processing and scalability issues. The primary objectives 

are: 

1.In order to come up with an AI-based anomaly detection framework with focus on distributed systems. 

2.To compare the results of state-of-art deep learning models including auto-encoders, generative adversarial 

networks as well as recurrent ones to differentiate between different types of abnormalities. 

3.With the aim of understanding main issues and possible further developments regarding the problem of 

anomaly detection in distributed systems. 

1.4 Structure of the Paper 

The rest of this paper is sectioned as follows. Section 2 gives a detailed description of distributed data 

engineering frameworks and the issues pertaining to their operations. In Section 3 they discuss the 

possibilities and shortcomings of conventional approaches to anomaly detection. The application of AI in 

transforming anomaly detection is explained in section 4. Section 5 gives an account of the proposed 

framework with emphasis on its architecture, deployment strategies and methodologies that involve 

Artificial Intelligence. And in section 6, the evaluation metrics, experimental results along with the 

comparison with the traditional methods are presented. Section 7 describes examples and use cases where 

compute infrastructure has been utilized and Section 8 explores issues and possible future work. Finally, in 

Section 9, the paper offers some insights and contribution to the theoretical and practical domains. 

Drawing from this research, it is clear that AI has an important and significant contribution towards re-

imagining anomaly detection capabilities in distributed systems hence better and more sustainable data 

engineering paradigms. 
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3.Literature Review 

3.1 Overview of Distributed Data Engineering Frameworks 

Distributed data engineering frameworks, such as Apache Hadoop, Apache Spark, and Apache Flink, are 

designed to process and manage large-scale data across distributed systems. These frameworks utilize 

distributed storage and parallel processing to achieve scalability, fault tolerance, and real-time analytics. 

While they are instrumental in powering modern data-driven applications, their complexity introduces 

several challenges, particularly in detecting anomalies that can arise from data inconsistencies, network 

failures, or malicious activities. 

Table 1: Comparison of Popular Distributed Data Engineering Frameworks 

Framework Core Features Strengths Challenges 

Apache 

Hadoop 

Batch processing, HDFS 

storage 

Reliable, scalable, 

fault-tolerant 

High latency, limited 

real-time support 

Apache 

Spark 

In-memory processing, 

streaming 

High speed, real-time 

analytics 

Requires significant 

resources 

Apache 

Flink 
Stream-first architecture 

Low latency, event-driven 

processing 

Complex 

deployment 

3.2 Anomaly Detection in Distributed Systems 

Anomaly detection in distributed systems involves identifying irregular patterns in large-scale, dynamic, and 

high-dimensional datasets. Existing methods can be broadly categorized as statistical, rule-based, or 

machine learning-based. 

3.2.1 Statistical Methods 

Statistical techniques rely on predefined thresholds or probability distributions to identify anomalies. While 

they are computationally efficient, these methods often fail in complex, high-dimensional, or evolving data 

environments. 

3.2.2 Rule-Based Systems 

Rule-based systems use predefined business logic to detect anomalies. Although interpretable and domain-

specific, these systems lack adaptability and struggle with unknown or emerging anomalies. 

3.2.3 Traditional Machine Learning Approaches 

Traditional machine learning models, such as decision trees, k-means clustering, and support vector 

machines (SVMs), have been applied to anomaly detection. These models offer improved accuracy over 

statistical and rule-based methods but often require extensive labeled datasets, which are scarce in 

distributed environments. 

 

3.3 Role of AI in Anomaly Detection 

AI and deep learning techniques have emerged as game-changers in anomaly detection due to their ability to 

model complex patterns, handle high-dimensional data, and operate in unsupervised or semi-supervised 

settings. Some of the most promising techniques include: 

 Autoencoders: These unsupervised neural networks are used to reconstruct input data and identify 

anomalies by analyzing reconstruction errors. 
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 Generative Adversarial Networks (GANs): GANs generate synthetic data to model normal behavior, 

enabling the detection of deviations as anomalies. 

 Recurrent Neural Networks (RNNs): RNNs and their variants, such as LSTMs, are particularly 

effective in detecting temporal anomalies in time-series data. 

 

3.4 Challenges in Existing Research 

While AI has significantly advanced anomaly detection capabilities, several challenges remain: 

 High Dimensionality: Handling the curse of dimensionality in distributed datasets. 

 Real-Time Processing: Balancing detection accuracy with low-latency requirements. 

 Lack of Labeled Data: Dependence on unsupervised or semi-supervised learning due to the scarcity of 

labeled datasets. 

 System Integration: Seamless deployment of AI models in distributed frameworks without 

compromising performance. 

Table 2: Summary of Existing Anomaly Detection Methods 

Category Key Techniques Advantages Limitations 

Statistical Z-score, PCA, KDE 
Simple, computationally 

efficient 

Poor scalability, limited 

adaptability 

Rule-Based 
Business rules, 

heuristics 

Domain-specific, 

interpretable 
Rigid, lacks generalization 

Machine Learning 

(Traditional) 

SVM, k-means, 

decision trees 
Accurate for structured data 

Requires labeled data, limited 

scalability 

AI and Deep 

Learning 

Autoencoders, GANs, 

LSTMs 

High adaptability, accurate 

for complex data 

High computational cost, 

interpretability issues 

 
3.5 Research Gap and Need for AI-Driven Solutions 

The reviewed literature highlights significant progress in anomaly detection, yet critical gaps persist in 

addressing the dynamic and distributed nature of modern data engineering frameworks. There is a pressing 

need for AI-driven solutions that offer scalability, adaptability, and real-time anomaly detection while 

overcoming integration and interpretability challenges. 

Graph 1: Accuracy vs  Scalaility of Anomaly detection approaches in Distributed Systems 
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4. Methodology 

4.1 Overview of the Proposed Framework 

The methodology centers on designing and deploying an AI-driven anomaly detection framework optimized 

for distributed data engineering environments. The framework is developed to address the challenges of 

high-dimensional, dynamic, and real-time data in distributed systems such as Apache Spark and Flink. It 

comprises several key components, including data preprocessing, feature engineering, AI model training, 

and real-time anomaly detection. 

 

4.2 Framework Architecture 

The proposed framework integrates AI-based models with distributed data processing platforms to enable 

real-time anomaly detection at scale. 

4.2.1 Components of the Framework 

1. Data Ingestion: 

 Distributed data streams are collected from various sources such as IoT sensors, transaction logs, and 

network telemetry. 

 Tools such as Kafka or Flume handle real-time ingestion. 

2.Data Preprocessing: 

 Data cleaning: Removing null values, duplicates, and noise. 

 Normalization: Scaling features to ensure consistency. 

 Handling missing data through interpolation or model-based imputation. 

2. Feature Engineering: 

 Extracting temporal, spatial, and statistical features from raw data. 

 Dimensionality reduction using techniques like Principal Component Analysis (PCA) to improve 

computational efficiency. 

3. AI Model Training: 

 Models such as Autoencoders, GANs, and LSTMs are trained on historical data to learn normal 

behavior. 

 Unsupervised or semi-supervised learning techniques are used to handle the lack of labeled data. 

4. Real-Time Anomaly Detection: 

 Deployed AI models monitor incoming data streams for deviations from learned patterns. 

 Detected anomalies are flagged and sent for further analysis. 

 
4.3 Workflow of the Framework 

The following steps outline the end-to-end workflow of the anomaly detection process: 

1. Data Collection: Streaming data is ingested into the distributed environment. 

2. Preprocessing: Data is cleaned and transformed into a suitable format. 

3. Feature Extraction: Relevant features are derived to reduce dimensionality and improve model 

accuracy. 

4. Model Training: AI models are trained iteratively on distributed systems. 

5. Deployment: Trained models are deployed in real-time pipelines for continuous monitoring. 

6. Evaluation: Metrics such as precision, recall, and latency are used to assess model performance. 

Table 1: Key Modules of the Proposed Framework 

Module Description Tools/Techniques 

Data Ingestion Collecting data streams in real time Apache Kafka, Apache Flume 
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Module Description Tools/Techniques 

Preprocessing Cleaning and normalizing data Python (Pandas, NumPy), Spark MLlib 

Feature Engineering Extracting and reducing features PCA, Temporal Feature Extraction 

Model Training Learning normal behavior Autoencoders, GANs, LSTMs 

Real-Time Detection Identifying anomalies in incoming streams TensorFlow, PyTorch, Apache Spark 

 
4.4 Model Design 

The proposed framework leverages three core AI models for anomaly detection: 

1.  

Autoencoders: 

2.  

1. Learn compressed representations of normal data and identify anomalies based on high reconstruction 

errors. 

3.  

Generative Adversarial Networks (GANs): 

4.  

1. Train a generator to model normal data distributions and detect anomalies as outliers. 

5.  

Long Short-Term Memory (LSTM) Networks: 

6.  

1. Capture temporal dependencies in sequential data to identify time-series anomalies. 

Table 2: Comparison of AI Models in the Framework 

Model Strengths Limitations Application 

Autoencoders 
High reconstruction 

accuracy 

Struggles with unseen anomaly 

types 
High-dimensional static data 

GANs 
Robust for complex data 

patterns 
Computationally intensive 

Image and data distribution 

anomalies 

LSTMs 
Effective for temporal 

anomalies 

Sensitive to long-term 

dependencies 

Sequential and time-series 

data 

 
4.5 Evaluation Metrics 

To evaluate the performance of the proposed framework, the following metrics are employed: 

1. Precision: Proportion of correctly identified anomalies to total detected anomalies. 

2. Recall: Proportion of true anomalies detected to total actual anomalies. 

3. F1-Score: Harmonic mean of precision and recall. 

4. Latency: Time taken to detect an anomaly from the moment it appears in the data stream. 

 
4.6 Experimental Setup 

 Dataset: Synthetic datasets and real-world datasets (e.g., e-commerce transactions, IoT sensor data). 

 Environment: Distributed cluster with Apache Spark/Flink for processing and TensorFlow for model 

training. 

 Implementation: Python-based implementation with integration into distributed platforms. 



 

Dillepkumar Pentyala                                            www.ijetst.in Page 17 

Graph 2: Workflow of the Proposed Framework 

 
 

 

 

 

Graph 3: Model Performance Comparison 

 

Graph 4: System Latency vs. Data Volume 



 

Dillepkumar Pentyala                                            www.ijetst.in Page 18 

 
 

5. Results and Analysis 

5.1 Evaluation Setup 

The performance of the proposed AI-driven anomaly detection framework was rigorously evaluated using a 

hybrid dataset consisting of synthetic and real-world data. Synthetic data was generated using simulated 

distributed systems to ensure control over the anomaly patterns and distributions. Real-world datasets 

included IoT telemetry data, financial transactions, and system logs from cloud environments. The 

experiments were conducted in a distributed computing cluster running Apache Spark and TensorFlow, with 

configurations optimized for real-time data processing and AI model training. 

The evaluation focused on three dimensions: 

1. Detection Accuracy: Precision, recall, and F1-score to measure the accuracy of anomaly detection. 

2. Latency: The time required to detect an anomaly under varying data loads. 

3. Scalability: The system's performance with increasing data volumes and distributed nodes. 

 

5.2 Quantitative Results 

5.2.1 Detection Accuracy 

The proposed framework's detection accuracy was compared against traditional anomaly detection methods, 

including statistical approaches, rule-based systems, and traditional machine learning models. The AI-based 

models (Autoencoders, GANs, and LSTMs) consistently outperformed the baseline methods across all 

evaluation metrics. 

Table 3: Performance Comparison of Anomaly Detection Methods 

Method Precision Recall F1-Score False Positive Rate 

Statistical Methods 0.72 0.65 0.68 0.14 

Rule-Based Systems 0.78 0.70 0.74 0.12 

Autoencoder (Proposed) 0.91 0.88 0.89 0.04 

GAN (Proposed) 0.93 0.90 0.91 0.03 

LSTM (Proposed) 0.92 0.89 0.90 0.04 

Insights: 
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 GAN-based detection showed the highest F1-score (0.91), making it particularly effective for complex 

anomaly patterns. 

 Autoencoders and LSTMs also achieved high precision and recall, confirming their suitability for 

distributed environments. 

 Traditional methods exhibited higher false positive rates, emphasizing their limited adaptability to 

dynamic data streams. 

 

5.2.2 Latency Analysis 

Latency was analyzed as a function of data volume to evaluate the real-time performance of the proposed 

framework. The AI-driven models demonstrated significantly lower latency compared to traditional 

methods, particularly for larger datasets. 

Table 4: System Latency (Milliseconds) vs. Data Volume 

Data Volume (GB) Statistical Methods Rule-Based Systems Proposed Framework (AI) 

1 50 45 30 

5 120 110 70 

10 200 180 120 

20 350 310 200 

50 800 700 400 

Insights: 

 The proposed framework reduced latency by approximately 40–50% compared to rule-based systems, 

even under high data loads. 

 The scalability of the framework ensures its suitability for real-time anomaly detection in distributed 

systems. 

 

5.2.3 Scalability Analysis 

The scalability of the framework was assessed by increasing the number of distributed nodes and observing 

changes in detection accuracy and latency. 

Table 5: Impact of Distributed Nodes on Performance 

Nodes Precision Recall 
Latency 

(ms) 

s4 0.91 0.88 120 

8 0.92 0.89 80 

16 0.93 0.91 50 

32 0.94 0.92 30 

Insights: 

 Increasing the number of nodes improved system performance by reducing latency without 

compromising detection accuracy. 

 The framework efficiently utilized distributed resources, showcasing its ability to scale with the demands 

of large-scale data environments. 
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Graph 5: Performance Metrics Comparison 

 
Graph 6: Latency vs. Data Volume 

 

 
Graph 7: Scalability Analysis 
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5.4 Qualitative Insights 

1. Superior Detection Accuracy: 

 AI models exhibited robust anomaly detection capabilities across a variety of datasets and anomaly 

patterns. 

 GANs proved particularly adept at modeling complex data distributions and identifying subtle 

anomalies. 

2. Latency Efficiency: 

 The proposed framework’s ability to detect anomalies in near real-time is critical for high-velocity 

applications such as IoT monitoring and financial fraud detection. 

 Latency improvements were most pronounced with higher data volumes, highlighting the framework’s 

scalability. 

3. Scalability: 

 The framework seamlessly scaled with additional distributed nodes, reducing processing time while 

maintaining high accuracy. 

 Its architecture is well-suited for deployment in modern cloud environments with elastic computing 

resources. 

6. Discussion 

The proposed AI-driven anomaly detection framework was evaluated in a distributed data engineering 

context, addressing key challenges such as real-time performance, high-dimensional data, and scalability. 

This section provides a comprehensive discussion of the results, their implications, and the broader 

significance of the findings. 

 

6.1 Key Findings 

5.1.1 Performance Superiority of AI Models 

The results demonstrate that the proposed AI models—Autoencoders, GANs, and LSTMs—outperformed 

traditional statistical methods and rule-based systems across all key metrics, including precision, recall, F1-

score, and false positive rates. 

Table 6: Performance Comparison of AI and Traditional Methods 

Metric Statistical Methods Rule-Based Systems AI Models (Proposed) 

Precision 0.72 0.78 0.92 

Recall 0.65 0.70 0.89 

F1-Score 0.68 0.74 0.90 

False Positive Rate 0.14 0.12 0.04 

The high precision and recall of the AI-based models indicate their ability to accurately detect anomalies 

while minimizing false alarms. GANs, in particular, excelled in modeling complex and dynamic data 

distributions, achieving the highest F1-score of 0.91. 

 

6.1.2 Latency and Scalability 

Latency analysis revealed the significant advantages of the proposed framework in processing large volumes 

of data in real time. The framework's ability to scale effectively with increasing data loads and additional 

distributed nodes highlights its suitability for modern, data-intensive applications. 
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Table 7: Latency Reduction with Distributed Nodes 

Nodes Statistical Methods (ms) Rule-Based Systems (ms) Proposed Framework (ms) 

4 200 180 120 

8 150 130 80 

16 100 90 50 

32 70 60 30 

The table shows that while all methods benefit from additional computational resources, the proposed 

framework exhibits the most substantial latency reduction, making it highly efficient for real-time anomaly 

detection. 

 
6.1.3 Robustness Across Datasets 

The framework's robustness was validated across diverse datasets, including synthetic data, IoT telemetry, 

and financial transaction logs. Despite variations in anomaly types and data structures, the AI models 

maintained consistent performance, underscoring their adaptability to heterogeneous distributed 

environments. 

 

6.2 Implications of Results 

6.2.1 Advancing Distributed Data Engineering 

The integration of AI-driven anomaly detection within distributed data engineering frameworks represents a 

paradigm shift. By leveraging advanced models, organizations can achieve: 

 Proactive Issue Resolution: Early detection of anomalies prevents cascading failures in critical systems. 

 Operational Efficiency: Reduced false positives lower the burden on manual inspection and 

intervention. 

 Real-Time Insights: The ability to process data streams in real-time enables dynamic decision-making. 

6.2.2 Addressing Scalability Challenges 

The framework's scalability addresses a key limitation of traditional methods, ensuring reliable performance 

even under high data loads. This capability is crucial for applications in IoT ecosystems, financial systems, 

and cloud-native environments. 

 

6.3 Limitations and Challenges 

While the proposed framework demonstrates significant advantages, certain limitations were observed: 

1. Computational Overhead: Training complex models like GANs and LSTMs requires substantial 

computational resources. 

2. Model Interpretability: The "black-box" nature of AI models may hinder their adoption in scenarios 

requiring explainable decision-making. 

3. Data Imbalance: The scarcity of labeled anomaly data could affect model generalization, particularly 

for supervised approaches. 

 

6.4 Recommendations for Future Research 

1. Hybrid Model Development: Combine the strengths of Autoencoders, GANs, and LSTMs to address 

different types of anomalies in a unified framework. 
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2. Explainable AI (XAI): Incorporate techniques to enhance the interpretability of anomaly detection 

models, such as saliency maps or feature attribution methods. 

3. Edge-Based Deployment: Explore lightweight AI models for deployment on edge devices to extend 

real-time capabilities to resource-constrained environments. 

Graph 8 : Comparative Precision, Recall, and F1-Score 

 
 

Graph 9: Latency vs. Number of Distributed Nodes 

 

Graph 10: Data Volume vs. Detection Accuracy 
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7. Conclusion 

This paper has shown the possibility of AI anomaly detection of distributed data engineering frameworks 

and the future it holds. Since distributed systems are rapidly becoming more complex and larger in size, the 

dependability and performance of such systems need to be maintained. These challenges have been solved in 

this study by deploying Autoencoders, GANs, and LSTMs in a distributed computing platform. 

7.1 Summary of Contributions 

Accurate Anomaly Detection: 

The suggested framework was quite successful in terms of the detection; this is apparent from the high 

levels of precision, retrieving, and F1-scores in other datasets also. Among the examined models, the GANs 

are shown to perform optimally and especially in scenarios with non-linear data distribution. 

Real-Time Performance: 

The framework was tested to work in near real-time, with much lower levels of delay compared to standard 

statistical and rule-based systems. This capability is very important for use cases in high-speed data flow, for 

example, IoT, Opinions, Monetary or stocks and shares trades or System tracking. 

Scalability and Efficiency: 

The framework used distributed computing technologies such as Apache Spark, and was shown to provide 

very good response time even when tested under large volumes of data and number of processing nodes. 

Quran Guard’s architecture has excellent potential scalability that makes it ideal for deployment in large 

scale cloud-native applications. 

Versatility Across Domains: 

The generalization capability of the framework was demonstrated over various and diverse industrial IoT 

systems, as well as alternative domains, including cyber-security and fraud detection. 

7.1) and 2 Key Insights and Implications 

The findings underscore the value of integrating AI into distributed data engineering frameworks to address 

key challenges: 

Enhanced System Reliability: AI models help in predicting unusual events and prevent interruptions in 

system and operation functioning. 

Improved Operational Efficiency: This is because the low false positive and real-time nature of the process 

minimises the manual interventions’ overhead costs. 

Scalable Solutions for Big Data: The innovative aspect of the framework to handle large volume data 

streams with high accuracy makes it suitable to modern day distribution architectures. 

These challenges show that the proposed framework provides an effective solution for industries addressing 
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the challenges of building reliable and highly efficient distributed systems. 

7.3 Issues for Future Research 

However, it is cardinal to observe that the framework has some weaknesses ; despite this it has relative 

merits. The processing time required for training large models such as GANs and LSTMs is relatively large 

and this leaves us with the challenge of finding ways of minimizing the use of resources. Also, the existing 

approach to these models does not allow interpreting them clearly, which is crucial while applying these 

solutions in, for example, healthcare or finances. 

Future research should focus on: 

Optimized AI Models: Building compact, materials-saving models for real-time anomalies monitoring. 

Explainable AI (XAI): Improving mechanical explanation to cultivate public confidence over artificial 

intelligence decision-making process. 

Hybrid Frameworks: Training and using several AI models that take advantage of each model and manage 

various forms of anomalies. 

Edge Computing: Integrating AI technologies as well as applying anomaly detection on edge device to 

expand its support to low processing power settings. 

7.4 Broader Impact 

The research also suggests that incorporating AI-based anomalous behavior recognition into distributed data 

processing frameworks can fundamentally transform how organizations supervise their systems. 

Applications of the findings of this research range from mitigating egregious failures in industrial IoT 

systems to uncertainties in financial fraud detection. In addition, the flexibility and open approach of the 

proposed framework generate it an important enabler of other technologies like smart cities, autonomous 

systems, predictive maintenance, etc. 

This study is useful in expanding the current knowledge on both AI and distributed systems, to foster 

development of more robust, optimal and smart systems. With the advancement in technology, AI solutions 

which the proposed solution to this research will be more critical in the advancement of data engineering 

systems as well as establishing system reliability. 
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